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Abstract. Solar energy is a favored renewable energy
source in the energy sector due to its zero emissions,
environmental friendliness, low cost, and sustainabil-
ity. However, meteorological factors such as weather
conditions and cloud movements can interrupt solar
radiation, potentially leading to undesirable outcomes
in the energy sector. Solar irradiance forecasting is
crucial for mitigating these adverse effects and sup-
porting the development of renewable energy projects.
In this study, the methods employed in the literature
for various prediction intervals are classified, and the
evaluation results of these predictions are summarized
in a table. Also, an example model created with AN-
FIS for estimating solar radiation is presented. Image-
based and NWP models is perform well for short-term
forecast horizons. To predict various time horizons,
artificial intelligence-based models such as time series
models, deep learning, and machine learning are pre-
fer. Hybrid models that combine multiple methods to
achieve higher accuracy are also proposed, although this
increases the complexity and cost of the model. There
are potential limitations in the field of solar forecasting
that arise from model and data characteristics. There-
fore, This study aims to guide other researchers in this
field by discussing the features, limitations, and results
of the models used for solar forecasting. Also, the ex-
ample of daily solar radiation forecasting provided in
this study offers a practical application opportunity for
researchers new to this field.
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1. Introduction

Today, the increasing demand for energy, coupled with
the growing world population, has highlighted the need
for renewable energy sources. The negative effects
of fossil fuels, such as global warming, air pollution,
and health problems, have made renewable energy
sources an attractive alternative [1]. Unlike conven-
tional sources, naturally occurring solar, wind, hydro-
electric, geothermal, and biomass energies are renew-
able and sustainable. Consequently, many countries
are adopting these sources to achieve energy indepen-
dence [2]. Solar energy, which occupies a significant
part of the energy market, is one of the most preferred
sources in the renewable energy sector [3]. When so-
lar radiation reaches the Earth’s surface, only 70% of
this radiation is absorbed, while the remaining 30% is
reflected and emitted into space. The total amount of
energy absorbed by the Earth’s surface is greater than
the combined reserves of coal and oil [4]. Solar energy
is a long- term, low-cost, environmentally, friendly, and
inexhaustible resource [5]. However, due to its inter-
mittent nature, the output power is variable which can
be defined as a non-stationary time series [6].

A solar photovoltaic module is a panel that can con-
vert solar radiation directly into electrical or thermal
energy, or both [7]. Solar panels have gained popularity
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because they can be easily integrated wherever there
is sunshine, without the need for long power lines, and
they require little maintenance [8]. However, they have
the problem of unpredictability, as weather conditions
change throughout the year [9]. Since the sun has an
intermittent energy structure, forecasting the output
power of photovoltaic (PV) systems becomes difficult.
Therefore, additional measures are needed to mitigate
the impact of energy intermittency and surges in the
utility sector, such as excess electricity generation [10].
Accurate solar radiation forecasts are essential for con-
ducting feasibility studies on energy systems [11]. One
of the fundamental parameters used to estimate the to-
tal energy production of a PV plant is the measurement
of solar radiation values over time [12].

Total solar radiation is attenuated by atmospheric
interaction as it travels towards the Earth’s surface.
It has two components: Diffuse Horizontal Irradi-
ance (DHI) and Direct Normal Irradiance (DNI). The
Global Horizontal Irradiance (GHI) is obtained by
summing these two components [13]. Generally, GHI
estimation can be divided into very short-term, short-
term, medium-term, and long-term horizons [14]. The
input variables used in the solar radiation forecasting
model determine the forecast horizon [15]. There are
three main techniques for solar radiation forecasting:
Numerical Weather Prediction (NWP), image- based
forecasting and statistical models [10]. The relation-
ship between forecast horizon and forecast method is
shown in Tab. 1. Approaches developed for solar radia-
tion forecasting can be categorized into two main types:
numerical methods and statistical methods. Numeri-
cal methods are based on the principle of reproducing
a physical phenomenon, while statistical methods rely
on machine learning, time series analysis, sky models,
and satellite-based derived from past time series anal-
ysis [15].

Tab. 1: Relationship between forecasting horizon and forecast-
ing method.

Forecasting
horizon

Time horizon Forecasting
method

Very short-term
A few

seconds–one
hour

Image-based

Short-term
One hour–a

few
hours

Image-based,
NWP

Medium-term
A few

days–one
week

NWP,
Statistical

Long-term One week–one
year Statistical

The aim of this paper is to review the methods used
in the literature to estimate solar radiation and analyze
the findings. By presenting the techniques of the differ-
ent methods in a clear and comprehensible manner, a
summary table will be created to facilitate comparison
between the methods. This review will enhance the

understanding of the methods and offer guidance for
future applications. Additionally, an example sunlight
prediction model is included for researchers who are
new to this field. The organization of this article is as
follows. Solar radiation forecasting methods are clas-
sified into three main categories. Section 2 deals with
Image-based models, Section 3 deals with NWP mod-
els, Section 4 deals with statistical models, and Section
5 with hybrid models. An example of solar irradiance
forecasting generated by the Adaptive Neuro-Fuzzy In-
ference System (ANFIS) model and tables presenting
the results used to analyze the performance of forecast-
ing techniques proposed in the literature are found in
Section 6. This section also discusses the limitations in
the field of solar forecasting. The conclusion presents a
summary of the literature on the methods and includes
a discussion section.

2. Image-based models

Cloud motion has a significant impact on the estima-
tion of solar radiation as the position of clouds can
obstruct the sun. Since clouds are variable, they play
a key role in determining the models developed for fore-
casting [10]. Cloud motion data from satellite imagery
and ground-based sky imagers are often important in-
puts for short-term forecasting [16]. Figure 1 demon-
strates a straightforward flow diagram of the image-
based solar forecasting method.

2.1. Satellite images

Satellite imagers capture images of large areas multiple
times within an hour and record them spatially and
temporally [17]. Solar radiation estimation is based
on cloud motion vectors (CMVs) derived from images
captured by these satellites [18].

For very short-term forecast horizons, the use of
satellite imagery is more suitable. A forecasting al-
gorithm has been developed for the Dutch region us-
ing the physical properties of clouds obtained from the
Spinning Enhanced Visible and Infrared Imager (SE-
VIRI) on the Meteosat Second Generation Geostation-
ary Satellite. The novelty of this paper lies in deriving
cloud motion vectors through the analysis of the phys-
ical characteristics of clouds. A forecast horizon of 0-
240 minutes is defined for the DNI and GHI forecasts.
It has been shown that the SEVIRI forecast model for
July 2017 achieves better results than the HARMONIE
NWP model, and it has been found that an accurate
forecast depends on weather conditions [18].

The interruption of solar radiation measurement in
certain regions degrades the accuracy of forecasting.
To address this issue, the study utilizes data from
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Fig. 1: A simple flowchart illustrating image-based forecast.

Fig. 2: The forecasted results of GHI under all condition days
with a 60 min horizon [19].

AGRI sensors on the FY-4A satellite to estimate GHI
in the Northwest China region under various weather
conditions. This estimation is based on the cloud index
methodology (CSD-SI). The calculation process is sim-
ple because this method does not require historical or
observational data. This makes it well-suited for desert
regions where measurements are not always available.
A forecast horizon of 15-180 minutes is defined. Figure
2 shows the solar irradiance forecast results for a 60-
minute forecast horizon under all sky conditions. The
best forecast performance is achieved under clear skies
[19].

In another study, the same author developed an
algorithm to estimate surface solar radiation in very
short-term intervals (30-180 minutes) using AGRI sen-
sors on the FY-4A geostationary satellite. GHI and
DNI forecasting results are compared for four typical
months, representing the four seasons, using meteoro-
logical data from the Chinese region. The GHI fore-
casting results of the FY-4A-AGRI model showed the
best results in all months and time horizons [20].

Fig. 3: TSI images captured with 10-min intervals for three sce-
narios: morning (top), day (middle), and evening (bot-
tom) [24].

Solar radiation estimation varies with sky conditions,
and the accuracy of the estimation decreases during
cloudy sky situations. A dataset from the Geostation-
ary Operational Environmental Satellite (GOES) and
Heliosat-2 satellites were utilized as input to enhance
the estimation of solar radiation during cloudy sky con-
ditions in French Guiana. The novelty of this work
lies in the integration of a cloudy sky with a radia-
tive transfer parameterization (RTP) to gain a deeper
understanding of the properties of local clouds. This
combination has been shown to yield better results in
regions with significant cloud cover [21].

2.2. Ground-based sky imagers

Sky image-based forecasting models can better identify
local sky information, such as sun position or cloudi-
ness, compared to satellite-based forecasting models
[22]. Most of the cameras used have fisheye lenses
that can capture the entire sky, allowing for the anal-
ysis of the position, movement, and optical proper-
ties of clouds [23]. Images captured by ground-based
upward-looking sky cameras, such as the Whole Sky
Imager (WSI) and Total Sky Imager (TSI), are used
to model solar radiation prediction [24]. Solar radia-
tion forecasting for Oklahoma utilizes sky images taken
by TSI every 10 minutes. Figure 3 shows the RGB
(Red-Green-Blue) cloud image captured in the morn-
ing, noon, and afternoon, illustrating a 10-minute vari-
ation. The black region is negligible because of the
shadow cast by the camera assembly. The blue color
represents a clear sky, while the white color represents
a thick cloud, and the lighter blue color represents a
thin cloud. Green regions indicate special areas [24].
In models based on sky imagery, forecast performance
is affected by convergent ray projection errors, stray
light, and noise, which make cloud detection difficult.
To address this issue, a testbed for a virtual sky im-
ager was created in this study. This virtual testbed
has been observed to greatly improve performance, as
it can detect individual cloud detection errors [25].
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One of the challenges faced in image-based solar fore-
casting is the misclassification of cloud-sky types and
inadequate extraction of cloud features. In order to
effectively implement the cloud-sky identification pro-
cess, this study proposes a clustering-boundary correc-
tion algorithm to address this issue. It aims to extract
multidimensional features from all-sky images, includ-
ing both regional and global features [26]. A methodol-
ogy is presented that combines real-time irradiance and
All-Sky imagery values for a very short-term forecast in
Salto, Uruguay. Solar forecasting is performed by con-
sidering the average movement of clouds. The proposed
model is evaluated for clear, cloudy, and partly cloudy
days, and its performance under various conditions is
observed. Favorable forecasting skills were obtained
under partly cloudy and highly variable conditions [27].
Taking only the average speed of the clouds has a nega-
tive impact on forecast performance because clouds at
different altitudes have varying speeds. Therefore, in
the study conducted for the city of Wollongong, Aus-
tralia, an alternative methodology was developed in-
stead of simply calculating the average speed of the
clouds. A model for short-term solar radiation fore-
casting is created by considering the individual move-
ments of clouds, their height above ground level, and
cloud thickness. The proposed model does not require
historical data and can detect the velocities of clouds
in various layers. Figure 4 shows the solar irradiance
results for forecast time horizons of 1, 5, and 15 min-
utes. Using the proposed model, an accuracy of 81%
is achieved for a 1 minute forecast time horizon. It is
concluded that classifying clouds based on their levels
and tracking the motion of individual clouds improves
forecast performance [28].

Cloud distribution and thickness in sky images are
important parameters for solar forecasting. Images ob-
tained from the all-sky imager are used to infer cloud
characteristics in the short-term solar radiation fore-
cast for the Taiwan region. With the proposed new
cloud feature extraction method, sky images are an-
alyzed and weighted regionally and globally. These
weight parameters are used as input data for the Long
Short Term Memory (LSTM) in the training model.
In this way, the effects of cloud distribution and cloud
thickness parameters are included as determinants in
solar forecasting [29].

All Sky Imager systems vary in their camera charac-
teristics, cloud distribution and algorithms, algorithms
and solar forecasting approaches. Four all-sky imagers
based on different methods were used for solar radia-
tion forecasting in Spain. Solar forecasting was con-
ducted for a duration of 1 to 20 minutes, taking into
account different weather conditions. All ASIs per-
formed with an Root Mean Squared Error (RMSE)
ranging from 6.9% to 18.1% [30]. There is a lack of
studies in the literature on extracting spatio-temporal

(a) 1-min.

(b) 5-min.

(c) 15-min.

Fig. 4: The solar irradiance results for forecast time horizons of
(a) 1-min, (b) 5-min, and (c) 15-min [28].

Fig. 5: Forecast results of VGG-11, ResNet-18, and DenseNet-
121 [32].

© 2024 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 311



YEŞİL, F. N. et al. VOLUME: 22 | NUMBER: 4 | 2024 | DECEMBER

information from sky images. Therefore, in this study,
a Cuboid method is proposed to define the spatio-
temporal features of grayscale sky images, and a pool of
spatio-temporal information is created. Thanks to the
dynamically and statically extracted spatio-temporal
features, a superior estimation performance is achieved
compared to other object detection methods, such as
DenseNet [31]. In another study where space-time in-
formation was used to enhance prediction accuracy,
the DenseNet method demonstrated superior predic-
tion performance compared to other ResNet models.
The forecast results for the next two days are pre-
sented in Fig. 5 [32]. Deep learning-based approaches
alone involve costly and complex mathematical calcu-
lations. Using multiple inputs significantly increases
the computation time. To solve these problems, this
study utilizes k-Nearest Neighbors (k-NN) and Ran-
dom Forest (RF) machine learning models with dimen-
sionality reduction techniques. Feature extraction is
achieved by analyzing the sky images captured by the
all-sky imager and total sky imager. The results of the
sun prediction using the proposed training model show
that it outperforms the deep learning-based approach
[33]. In another study utilizing machine learning al-
gorithms, a model based on the principle of real-time
surface irradiance mapping was developed to correlate
sky images with solar irradiance values. Red-Green-
Blue (RGB) values and pixel location information are
extractes from sky images. The trained model is con-
tinuously updated and used for very short-term (one-
minute to ten-minute) forecast horizons. It has been
observed that the prediction method using Back Prop-
agation Neural Network (BPNN) and Support Vector
Machine (SVM), based on pixel information input, bet-
ter tracks the variation of irradiance under different
cloud conditions [22].

3. Numerical weather
prediction models

The mathematical analysis of the equations that physi-
cally describe the changes occuring in the atmosphere,
the weather, constitutes, the NWP models [34]. At
short-term forecast horizons, such as a few days ahead,
NWP models demonstrate superior forecast perfor-
mance [35]. While NWP models perform well for large
scale processes, they parameterize atmospheric phe-
nomena that they cannot determine at small scales [36].
NWP models can be categorized into global models and
regional or medium-scale models [37].

For cloudy days, deviations the forecast of the DNI
forecast with NWP models can be larger. To enhance
the accuracy of hourly DNI forecasting in the Southern
Great Plains region, Texas integrated the Wheather
Research and Forecasting with Solar Extension (WRF-

Solar) model with the Fast All-Sky Radiation model
(FARMS-DNI). This significantly reduced the effects
of uncertainty in cloud information [38]. The study
proposes the use of the WRF model to forecast hourly
solar radiation for Gifu city in Japan. When compar-
ing the results of the medium- scale model with those
of the LSTM model, it is evident that the proposed
model demonstrates a prediction capability with 19%
less error [39]. The WRF model, which is used for
hourly solar radiation forecasting in the Singapore re-
gion, is combined with multivariate statistical learn-
ing techniques such as stepwise variable selection and
alternative dimensionality reduction. This combina-
tion aims to achieve accurate forecasting with mini-
mal error [40]. In another study, the same author at-
tempted a novel approach by integrating NWP models
with post-processing algorithms. The regression mod-
els used to forecast monthly solar radiation in Penn-
sylvania were combined with the NWP post-processing
algorithm. With NWP post-processing, the prediction
models were shown to perform with higher accuracy
[41]. In the Desert Rock region, high-resolution mod-
els are used for a forecast horizon ranging from 1 to
12 hours. It is emphasized that the use of numerical
weather forecast information produced by space cen-
ters and weather forecasting agencies is crucial in so-
lar energy applications. Figure 6 shows the marginal
distributions of forecast and observation for the three
Numerical Weather Prediction (NWP) models across
seven regions in 2020. The HRES model demonstrates
the best agreement between the forecast and observed
marginal. The forecasts of the ECMWF-HRES model
showed the best performance with an RMSE of 14.0-
33.7% [42]. In the study on hourly solar radiation
forecasting in Australia, the forecasting capabilities of
NWP models using the Earth System Simulator (AC-
CESS) and the Global Forecast System (GFS) were
examined [43].

The forecast performance NWP models may de-
crease as the forecast horizon increases. The NWP
information used to perform short-term solar radiation
forecasting in Goodwin Creek, Mississippi, is updated
hourly. The novelty of this study lies in the utiliza-
tion of a Kalman Filter to eliminate the inherent bias
effects of the NWP model. The findings demonstrate
that the NWP method with the Kalman Filter is able
to forecast with fewer errors [44].

4. Statistical models

The preferred statistical models for different forecast
horizons are artificial neural network-based models and
time series models that incorporate historical irradi-
ance data.
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Fig. 6: Marginal distributions of forecast and observation, from
three NWP models, at seven locations, over the year
2020 [42].

4.1. Auto regressive integrated
moving average

In solar forecasting, the time series model uses histor-
ical data of the irradiance value to infer its future be-
havior [45]. Autoregressive Moving Average (ARMA)
model is preferred for autocorrelated time series data.
In the ARMA model, “AR” stands for the autoregres-
sive part, while “MA” stands for the moving average
part. The model is denoted as ARMA (p,q). In the
symbolic representation, “p” represents the degree of
the autoregressive part, and “q” represents the degree of
the moving average part [46]. By extending the ARMA
method, Seasonal Auto Regressive Integrated Moving
Average (SARIMA) and Auto Regressive Integrated
Moving Average (ARIMA) models are obtained [47].
In the equations provided below to represent ARIMA
model variants, Yt represents the time series, c denotes
any constant, p indicates the number of lags relative to
Yt, q signifies the number of past error terms, and et
represents white noise.

Equation for a p-th order AR(p) model is repre-
sented as:

Y t = c+ et+
∑p

i=1
ΦiY t− i (1)

Equation for a q-th order MA(q) model is repre-
sented as:

Y t = c+ et+
∑q

i=1
Qiet− i (2)

Equation for p-th and q-th order ARMA(p,q) model
is represented as:

Y t = c+ et+

p∑
i=1

ΦiY t− i+

q∑
i=1

Qiet− i (3)

Equation for ARIMA(p,d,q) model is represented as:

∆Y t− i+ 1 = Y t− i+ 1− Y t− i (4)

Y t = Y t− 1 + et+

p∑
i=1

ΦiΛY t− i+ 1 +

q∑
i=1

Qiet− i

(5)

Fig. 7: Solar irradiance forecasting for a winter day by ARMA
[49].

For an accurate solar radiation forecast, a dataset
covering at least one year is required. Shadab et al.
used monthly solar irradiance values for a total of 34
years between 1984 and 2015 for monthly solar radia-
tion forecasting in Delhi, India. An optimal seasonal
ARIMA model, based on the Box-Jenkins methodol-
ogy, was developed for a single region [45]. In their
next study, a seasonal ARIMA model was created for
more than one region in the city of Delhi. It was aimed
to identify regions with high solar potential and to give
ideas to energy investors [48].

The solar potential varies according to the climatic
conditions of different geographical locations. ARIMA
models were specified for different climatic conditions
to forecast monthly solar radiation for Jordan and
Poland. All the proposed models predicted with R2

values above 85%. The SARIMA model developed for
the Jordan region showed the best prediction perfor-
mance in the GHI estimation for August in the sum-
mer season. This is because the solar radiation behav-
ior in the Jordan region tends to be more stable [11].
During the winter season, solar radiation can be inter-
mittent, leading to a decrease in forecast performance.
An ARMA model is developed for daily solar radiation
forecasting for North Barcelona in winter. The pre-
diction plot in Fig. 7 shows that the ARMA model
effectively predicts small changes in irradiance [49].

Solar forecasting performance is influenced by sea-
sonal conditions as well as the change of weather condi-
tions during the day. Hourly solar radiation forecasting
is performed for the city of Missour, Morocco consider-
ing four different weather conditions. LSTM and Mul-
tilayer Perceptron (MLP) models outperformed the
SARIMA model, while the SARIMA model also per-
formed effectively in clear and less variable weather
conditions [50].

ARIMA-based time series models show better per-
formance for long-run forecast horizon. A Seasonal
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ARIMA model was developed to forecast monthly and
daily solar radiation for Seoul, South Korea [51]. The
SARIMAX model is developed for forecasting daily and
monthly solar irradiance in Islamabad, Pakistan, using
multiple input values. Both ARIMA-based models ob-
tained a more successful result for the long-run forecast
horizon [52].

Studies comparing ARIMA-based models with ma-
chine learning models are also frequently found in the
literature. ARIMA and Fuzzy Logic (FL) models were
proposed for forecasting hourly DNI in Golden, Col-
orado. When comparing the results, the FL model pre-
dicted with less error [14]. In the hourly GHI forecast-
ing for Brazil, the proposed ARIMA model was not su-
perior to machine learning based models [53]. However,
the fact that the proposed ARIMA model for Jaffna,
Sri Lanka outperforms the Neural Networks, Random
Forest Tree (RF), SVM, and Linear Regression (LR)
models in DNI forecasting suggests that this assump-
tion is not always valid [54]. The ARIMA model pro-
posed as an hourly solar irradiance prediction model
for Tetouan, Morocco also outperformed SVM and the
k-NN machine learning models [55]. The same author
proposed the ARIMA model for forecasting daily and
monthly solar radiation in Morocco [7, 56]. The perfor-
mance of ARIMA models can be affected for better or
worse depending on the input variable, forecast horizon
and seasonal characteristics. Paulescu et al. summa-
rized this situation in their study by arguing that no
model can be characterized as the best. However, the
features that contribute to a model’s superior perfor-
mance compared to others are controversial [57].

4.2. Artifical neural network

The working principle of Artificial Neural Networks
(ANN) is based on the functioning of biological nerve
cells. It is modeled by mathematically expressing the
structure and functions of biological neurons [58]. Each
input parameter is weighted, then summed, and the
outcome is transformed into a transfer function, such
as sigmoid, hyperbolic, or tangent, according to the
operating principle of an artificial neural network [59].
ANN is one of the most preferred approaches in solar
energy applications [60]. It performs prediction using
algorithms such as feed-forward and feed-back propa-
gation [61].

The structure of an artificial neuron was illustrated
in Fig. 8. The net input is obtained by adding the
activation threshold to the weighting of neighboring
artificial neurons. The activation threshold can have
a positive or negative value. The output value is cal-
culated by applying the activation function to the net
input data. The equations used in the process are pro-
vided below [62].

Fig. 8: Structure of an artificial neuron.

Netj =

n∑
i=1

XiWij −Qj (6)

Y j = f
(
Net j

)
(7)

The back-propagation (BP) algorithm continuously
updates the output value, minimizing the error level
and bringing it closer to the target value. Among feed-
back networks, one of the simplest structures trained
with the standard BP application is the Elman net-
work model [63]. The proposed ANN for forecast-
ing monthly solar radiation in Chandigarh, India is
trained using the Elman back-propagation algorithm.
The decimal normalization technique was used for data
preparation. The Elman BPNN showed better predic-
tion performance than the feed-forward neural network
[64]. One of the BP application types is the momen-
tum and learning fold BP algorithm. The difference
from standard BP algorithms is the use of weight coef-
ficient values before two iterations. A neural network
model trained with momentum and learning coefficient
BP algorithm is proposed to perform daily solar radi-
ation forecasting for the city of Aswan, Egypt. It pre-
dicted with less error than the standard BPNN model
[65]. Another type of BP algorithm is the Levenberg
Marquand training algorithm. The Levenberg Mar-
quand BPNN model developed for hourly solar irra-
diance forecasting for Surabaya, Indonesia showed a
prediction performance with an R2 value of 0.983 [66].

In the literature, linear models based on experiments
and observations have also been developed for solar ra-
diation forecasting. The Angstrom-Prescott type lin-
ear model and the Levenberg Marquand BP algorithm
network method, developed for daily solar radiation
forecasting in Mersin, Turkey, were compared [67]. An-
other study compared the Angstrom-Prescott type lin-
ear model and Levenberg Marquand BP method for
monthly solar irradiance forecasting for another city in
Turkey, Antakya [68]. In both studies, it was observed
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Fig. 9: Comparison graph of ANN and Fuzzy logic [8].

that the proposed ANN model obtained a better pre-
diction result. In another study comparing empirical
and ANN models, the BPNN model outperformed the
multilinear regression model in solar radiation forecast-
ing for the Northern Greece region [69].

Researchers have frequently compared ANN models
and machine learning techniques in their studies on so-
lar radiation forecasting. An ANN was developed to es-
timate the hourly values of three components of solar
radiation (Horizontal Global, Horizontal Diffuse, and
Normal Beam) in the Odeillo region of France. The
prediction performance of this neural network model
was compared with that of a RF model. During pe-
riods of high meteorological variability, the RF model
predicted better [70]. However, this is not always an
accepted phenomenon. In an hourly solar radiation
forecast for Morocco, the proposed ANN model out-
performed the RF model [71]. In another study, the
same researcher proposed the Levenberg marquardt
BPNN technique to estimate daily solar irradiance for
the Fez region of Morocco [72]. Another machine
learning model, FL, was compared with feed-forward
BPNN method to estimate monthly solar irradiance for
Dhaka, Bangladesh. The findings demonstrated that
the neural network model performed better, achieving
an accuracy of 98.78%. The comparison of the fore-
casting performance of the two models is presented in
Fig. 9 [8]. In another study, the results of the ANN
method developed to predict daily solar radiation are
compared with the performance of k-NN, SVM, and
deep learning models. The k-NN model achieved the
worst prediction performance, while the BPNN model
achieved the best prediction performance [73].

One of the factors that affect the prediction per-
formance of ANN models is the characteristics and
number of input parameters. ANN models built using
different input combinations are compared to forecast
daily solar radiation for the Samsun region. The aim
here is to determine the variables that can predict the

best solar radiation. To improve the prediction perfor-
mance, the solar irradiance value of the previous day
was added to the input parameters [74].

4.3. Machine learning

Machine learning (ML), which is likened to human nat-
ural behavior, is a trending field in today’s informatics
world [75]. The goal of ML is to take data and perform
self-learning. Many researchers are working in this area
to achieve high accuracy in ML approaches [76].

Multivariate Adaptive Regression Spline (MARS)
technique, which is one of the regression methods
that can evaluate multiple dependent and independent
variables together, has an easy-to-understand and in-
terpretable feature among machine learning methods.
The MARS model is proposed for hourly GHI fore-
casting in Hong Kong, China. The performance of 16
MARS models, developed with different combinations
of input variables, is analyzed [77]. The ML model
used by many authors in the literature is the SVM. So-
lar radiation is variable throughout the day, but this
variability follows a certain pattern under consistent
weather conditions. If the slope of the radiation gra-
dient is calculated based on this pattern, the future
radiation value can be easily predicted. The working
principle of the SVM is based on this [78]. SVM-based
approaches were developed to estimate daily solar ra-
diation in Beijing, China, and the researchers observed
the effect of surface fog and haze on solar radiation esti-
mation. In addition to the input variables, the air qual-
ity index (AQI) parameter is also included. When the
results were compared, the SVM model with AQI in-
put parameter improved the performance of the model
by reducing the RMSE from 0.114 to 0.102 [79]. In
another study, SVM models were considered depend-
ing on the input parameter. These models used cer-
tain meteorological factors as input and only relied on
solar radiation data. For the first model, the SVM ap-
proach showed the best prediction performance with
an R2 value of 0.99 [80]. In addition to meteorologi-
cal variables, cloud and sky images can also be used
as input data. The forecasting performance of Gradi-
ent Boosting (GB) and k-NN techniques, developed to
forecast hourly solar radiation in Folsom, California, is
compared. The GB model performed more effectively
with the addition of sky images to the input parame-
ters [81]. The number and characteristics of the input
parameters have an important impact on the efficiency
of the SVM method, and optimizing these parameters
can also affect the prediction accuracy. The proposed
SVM-based method for daily solar irradiance forecast-
ing in Beijing, China were optimized using Particle
Swarm (PSO), Bat (BAT), and Whale (WOA) algo-
rithms. It has been shown that heuristic algorithms
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greatly improve the prediction performance of SVM
[82].

Comparison of ML-based of techniques in the liter-
ature provide for to solar project investors and other
researchers. In this way, it can provide ideas for se-
lecting models for regions with similar climatic con-
ditions. For example, a study was conducted to pre-
dict monthly solar radiation using five types of machine
learning methods: Extreme Learning Machines (ELM),
SVM, Gaussian Process Regression (GPR), k-NN, and
LSTM method. The study utilized parameters from a
total of 163 meteorological stations located in various
climates across Turkey. It was observed that LSTM
and GPR models are more effective for arid and semi-
arid climates [83]. Twelve machine learning techniques
were compared for forecasting monthly and daily solar
radiation in Ganzhou, China. In Fig. 10, the error
values and scatter plots of the machine learning mod-
els used to predict the monthly average solar radiation
are displayed. GB technique demonstrated successful
prediction performance in daily irradiance prediction,
while XGBoost technique showed successful prediction
performance in monthly irradiance prediction [84]. In
another study, forty-five machine learning techniques
were compared for forecasting monthly solar irradi-
ance in Eskisehir, Turkey. According to the metric
results, the best seven models were obtained as RF, Ex-
tra Trees, HistGB, Decision Tree (DT), Bagging Tree,
LightGBM [85].

By approaching solar forecasting from a different
direction, researchers have also emphasized the stud-
ies on estimating the energy obtained from the sun
in power plants because solar irradiance value is the
most important parameter in solar power estimation.
Lasso Regression, k-NN, SVM models are compared in
solar power estimation using solar irradiance data of
Nigde, Turkey region. With an R2 value of 0.997, SVM
algorithm showed the best performance [86]. In an-
other study, SVM, Linear Regression (LR), GPR, DT,
and Community Regression (CR) models developed for
short-term prediction of the energy obtained from the
solar energy center in Australia were compared with
each other. The SVM approach was found to pro-
vide the best prediction performance result [87]. In
solar power forecasting studies, optimization of mod-
els improves the forecasting performance. The SVM
model developed for power forecasting using solar ra-
diation and temperature values for Victoria, Australia
was optimized with GA. Thanks to the optimization,
the SVM model RMSE value decreased from 680.85 to
11.226 and the prediction performance was improved
[88].

Fig. 10: Scatter plots of the results of machine learning models
in predicting monthly average solar radiation [84].

4.4. Deep learning

Deep learning (DL), also known as hierarchical learn-
ing, is a specific area of ML and ANN with multiple
hidden layers [89]. It is a phenomenon that enables
computers to learn on their own from raw data with-
out human intervention [90]. LSTM, Recurrent Neu-
ral Network (RNN), Deep Recurrent Neural Network
(DRNN), and Convolutional Neural Network (CNN)
are some of the deep neural network models [91]. The
LSTM model is the most preferred method by re-
searchers in the literature. A simple LSTM architec-
ture has three parts: input, forget, and output gates.
While the forget gate determines whether to retain or
discard information, the input gate updates the infor-
mation and transfers it to the output gate [92].

The LSTM architecture shown in Fig. 11 consists
of repeating blocks: forget gate (ft), input gate (it),
and output gate (ot). The process of detecting the
information to be deleted using the input data xt and
ht−1 is given in Eq. (8). Here, the activation function
is generally determined as sigmoid (σ).

ft = ∂(Wf, x∗Xt+Wf, h∗ht− 1 + bf) (8)

Eq. (9) and Eq. (10) are then used to determine
new information in the input layer. After updating the
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Fig. 11: Long Short-Term Memory Architecture [93].

information with the sigmoid function, the candidate
information that will contribute to forming the new
information is identified using the tanh function.

it = ∂(Wi, x∗Xt+Wi, h∗ht− 1 + bi) (9)

ct = tanh(Wc, x∗Xt+Wc, h∗ht− 1 + bc) (10)

New information is generated using Eq. (11). Fi-
nally, in the output layer, Eq. (12) and Eq. (13) are
used to obtain the output data. This process contin-
ues until the difference between the training values and
the LSTM output values decreases. Weight parameters
(W) and threshold values (b) are updated accordingly
[93].

ct = ct− 1∗ft+ ii∗ct (11)

ot = σ(Wo, x∗Xt+Wo, h∗ht− 1 + b0) (12)

ht = ot∗ tanh(ct) (13)

In order to address the issues of gradient fading
and bursting during the training phase of the RNN
model, researchers developed the LSTM architecture
with memory cells and gate mechanism, as well as the
Gated Recurrent Units (GRU) architecture [94].

Solar radiation estimation can be conducted for so-
lar panels on ships as well as in desert areas, which are
characterized by arid conditions. A researcher devel-
oped an LSTM model for estimating hourly solar irra-
diance in the Bikaner region of the Thar desert. The
proposed model achieved the lowest RMSE value of
0.0995 for different time intervals [95]. Another study
was conducted to forecast different time intervals for
the city of Folsom, California. ANN and LSTM models
were compared for predicting solar radiation at 1, 15,
and 60-minute intervals. The LSTM model achieved
better prediction results than the ANN model, with a
MAPE value that was 1.63% lower. It is observed that
the gap in prediction performance between the mod-
els narrows as the forecast horizon increases [96]. One
study compares the ANN model for hourly solar irradi-
ance forecasting in Santiago, Cape Verde. The perfor-
mance of the BP Algorithm method and the proposed

Fig. 12: Comparison graph of GRU, LSTM and RNN in
monthly [101].

LSTM model are compared. When one year of data
was used, the LSTM model achieved an accuracy of
18.34%. However, when 10 years of data was used, it
achieved an accuracy that was 42.9% higher than the
ANN model [97]. In the hourly solar radiation fore-
casting for South Korea, the proposed LSTM model
outperformed the feed-forward neural network model
[98].

RNN-based models suffer from a gradient problem
when making long-term forecasts. In this study com-
paring RNN and LSTM models, they estimate GHI on
an hourly and daily basis. The clarity index parame-
ter is added as an input to enhance the forecast perfor-
mance on cloudy days. Due to the memory issue in the
RNN model, it was not able to perform as effectively
as LSTM [99]. In order to address the memory issue in
the RNN architecture, the Door Iterative Units (DIU)
model has been developed and is used in compara-
tive studies alongside LSTM models. GRU and LSTM
models are compared in hourly solar radiation forecast-
ing for Phoenix, Arizona. The LSTM model predicts
with less error. In addition, GRU and LSTM models
were found to give better results than univariate sta-
tistical models [100]. In another GRU-LSTM compar-
ison study, the GRU model showed higher accuracy in
hourly and daily solar radiation forecasting for Buson,
Korea. Since GRU has two gates, the model complex-
ity is lower than that of the LSTM model. This results
in slightly better prediction performance of GRU, as
shown in Fig. 12 [101]. LSTM architecture is also di-
vided into different types. A study was conducted on
time series models based on deep learning methodol-
ogy for a region in India. LSTM, Bidirectional LSTM,
GRU, Attention LSTM models have been developed for
daily solar irradiance estimating. Here, the time series
are based on single location univariate solar irradiance
data as well as models that consider information from
multiple locations [102].
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Comparison studies of DL and ML methods are
widely available in the literature. Three traditional ML
models and three DL models (RF, SVM, Polynomial
Regression, CNN, ANN, RNN) were compared in solar
radiation prediction for Borno, Nigeria. In contrast to
DL models, the RF model, which is one of the ML tech-
niques, showed better prediction performance [103]. In
contrast to the result mentioned here, the LSTM model
improved the prediction performance for hourly solar
radiation at Penn State by 71.5% compared to tradi-
tional ML methods [104]. In another daily solar radia-
tion forecasting study for Çorum province, RF, k-NN,
GB and DT models were compared with LSTM model.
While the LSTM model gave the best result, the DT
model showed the worst performance [105]. GB model,
which is a derivative of DT, was compared with the
LSTM model in a study on solar radiation forecasting
in India. According to the metric results, the LSTM
model showed prediction performance with less error.
It is noteworthy that the estimation performance of
the model changes according to the number of input
variables. The LSTM model, which takes into account
the meteorological information of the immediate re-
gion, obtained more accurate results than the LSTM
model based only on past irradiance values [106]. The
parameters and input variables of the LSTM model
also affect the forecast performance. The forecasting
capability of the LSTM method developed for hourly
solar radiation forecasting in Denver, the capital city
of Colorado, USA, was analyzed using different param-
eters. The model that takes into account the weather
information for the next day has shown better perfor-
mance [107].

5. Hybrid models

Researchers working on solar forecasting have devel-
oped hybrid models to achieve precise and highly accu-
rate forecasts, which have become the preferred meth-
ods due to their ability to analyze data [108]. Since
a dataset exhibits both linear and non-linear charac-
teristics, utilizing a hybrid model instead of a single
prediction model enhances performance. Hybrid mod-
els are used in three type ways: linear, non-linear, and
both non-linear and linear [15].

Hybrid modeling is used enhance improve the perfor-
mance of the ARIMA employed used in univariate time
series forecasting modeling. This is achieved by ex-
tracting specific attribute values from historical data.
The ARIMA model, which performs univariate time
series analysis to forecast daily solar irradiance for the
region of Morocco, was developed as a hybrid with an
artificial neural network model [109]. In another study
by the same author, the ARIMA model was used in
combination with a feed-forward BP method for fore-

Fig. 13: Comparison actual measured data and ANFIS-PSO
predicted data [110].

casting daily solar irradiance over the Moroccan region
[56]. ANFIS are a type of ANN that combines the ad-
vantages of ANN and FL methods to create a pow-
erful inference system. The proposed ANFIS model
for forecasting monthly solar radiation over Malaysia is
optimized using differential evolution (DE) algorithms,
GA, PSO. Comparing the metric results, the ANFIS-
PSO hybrid method achieved better prediction perfor-
mance [110]. Comparison of actual measured data and
ANFIS-PSO predicted data is shown in Fig. 13.

The another study aimed to minimize the predic-
tion error of solar radiation by examining SVM mod-
els built in a hybrid way with optimization algorithms
such as PSO and GA to obtain appropriate parame-
ters [111]. Another type of ANN, known as the Mul-
tilayer Perceptron (MLP), is used in combination with
CNN for short-term solar radiation prediction. The
CNN method extracts features from sky images, and
the MLP network utilizes this information to establish
a correlation between solar irradiance and weather con-
ditions [112]. In another study, hourly solar radiation
forecasting was performed using a hybrid CNN model
that incorporated satellite imagery. Here, the impact
of cloud locations on the performance of solar irradi-
ance estimating was investigated [113]. A hybrid model
that utilizes satellite images and sky images was pro-
posed for forecasting hourly solar radiation in France
[114].

In the literature, DL-based hybrid models are among
the most preferred methods for solar radiation fore-
casting. A LSTM-CNN hybrid model is proposed for
forecasting hourly solar radiation in San Diego, Cal-
ifornia. The developed model yielded the best result
for short-term solar radiation estimating under various
weather conditions [115]. In contrast to this result, the
LSTM-CNN model developed for daily solar radiation
forecasting in an Australian solar farm did not perform
as well as the proposed hybrid deep SCLC model [116].

The GRU model, which is simpler than the LSTM
model, has certain advantages due to lower low pa-
rameterization faster high training speed. A hybrid
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GRU-Attention model was proposed for short-term so-
lar radiation forecasting for the Las Vegas region [117].
However, there are studies in the literature that in-
dicate that single models demonstrate better predic-
tion performance. ARIMA and Bidirectional Gated
Unit (Bi-GRU) methods are combined for short-term
solar irradiance estimating in South Korea. The de-
veloped hybrid method exhibits lower forecast perfor-
mance compared to the individual models. This result
challenges the notion that hybrid methods will always
outperform single models in forecasting performance
[118].

6. Results

This section, the formulas for the evaluation metrics
are presented first. Subsequently, an example study
predicting solar radiation using the ANFIS model is
conducted. The performance evaluation results of the
methods and approaches used for solar irradiance pre-
diction in the literature are summarized in Tab. 6-13.
Some limitations and potential drawback that should
be considered in the review study are identified. Fi-
nally, the problems that need to be addressed and the
solutions used in the literature are discussed.

Performance evaluation is a statistical metric used
to measure the accuracy of models [92]. The accuracy
criterion is crucial when evaluating the performance
of forecasting techniques [73]. The error metrics com-
monly used in solar radiation forecasting models are as
follows. In the equations, Y(exp,i) represents the actual
value at time step i, Y(forecast,i) represents the observed
value at time step i, µ represents the average of the ac-
tual value and N represents the number of data points
to be evaluated.

Mean Bias Error shows the difference between of pre-
dicted values and their corresponding actual values.
MBE is more effective in measuring long-term forecast-
ing performance. A low MBE score indicates that the
long-term forecasting model is functioning well [119].

MBE =
1

N

N∑
i=1

(Y exp, i− Y forecast, i) (14)

Mean Absolute Error (MAE) is the average of the
absolute differences between predicted and actual val-
ues in the dataset. A low MAE value indicates strong
prediction performance [120].

MAE =
1

N

N∑
i=1

|Y forecast, i− Y exp, i| (15)

MSE is the average of the squared differences dif-
ference between the actual and the predicted values.

Fig. 14: Global Horizontal Irradiance value between 2017-2022.

The square root of MSE is the Root Mean Square Er-
ror (RMSE). RMSE is an effective evaluation tool in
short-term solar radiation forecasting. As the RMSE
value approaches zero, the model’s performance im-
proves [121].

MSE =
1

N

N∑
i=1

(Y forecast, i− Y exp, i)
2 (16)

RMSE =

√√√√√ N∑
i=1

(Y forecast, i− Y exp, i)
2

N
(17)

Coefficient of Determination (R2 score) is a measure
of how well the predictions approximate the true val-
ues. It indicates the linear relationship between the
true and predicted values in the dataset. The R2 score
ranges between zero and one, and closer to one indi-
cates better model performance [122].

R
2 = 1−

N∑
i=1

(Y exp, i− Y forecast, i)
2

N∑
i=1

(Y exp, i− µ)
2

(18)

Example of solar irradiance predict:

Under this heading, the dataset used in the short-
term forecasting of Global Horizontal Irradiance (GHI)
with the ANFIS model and the results of the model’s
performance evaluation are presented. The dataset
named “Renewable Energy and Weather Conditions”
from the Kaggle data sharing site is utilized for short-
term solar radiation forecasting with an ANFIS model.
This dataset includes hourly meteorological informa-
tion and energy consumption data from 2017 to 2022.
The time-dependent graph displaying hourly solar ir-
radiance information is presented in Fig. 14.

Energy exchange value (Wh), temperature, sunshine
duration, and time of day were used as input param-
eters. For GHI estimation, 70% of the dataset is allo-
cated to training data, while 30% is allocated to test
data. The ANFIS model was created using the ANFIS
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Tab. 2: Relationship between forecasting horizon and forecast-
ing method.

The parameters of the ANFIS
model.

Value
MF type Trim Function

Output MF Linear
Number of nodes 193

Number of training data pairs 34440
Number of fuzzy rules 81

Toolbax interface in MATLAB R2021a. The parame-
ters of the ANFIS model are provided in Tab. 2.

The prediction performance of the ANFIS model is
evaluated using RMSE and R2 score metrics. The re-
sults of the prediction and training datasets are pre-
sented in Tab. 3. The daily solar radiation forecasting
graphs selected from months representing the four sea-
sons from the test data are shown in Fig. 15-21. The
RMSE and R2 evaluation of the forecast results for the
specified days are presented in Tab. 4.

Tab. 3: The results of the prediction and training datasets.

ANFIS Model RMSE
(
W/m2

)
R2

Train 12.135 0.972
Test 13.964 0.965

Tab. 4: The forecast results of the specified days.

Predict Day RMSE
(
W/m2

)
R2

Dec 20, 2020 1.641 0.996
Feb 22, 2021 6.177 0.992
Apr 10, 2021 6.398 0.981
Oct 23, 2021 5.465 0.980
Nov 27, 2021 3.980 0.981
May 19, 2022 9.698 0.993
Aug 22, 2022 8.044 0.977

In selecting a forecasting model, it is essential to con-
sider the relationship between the forecasting horizon
and the model’s performance to determine the univer-
sally best approach. Upon examining the results ta-
bles, methods yielding low error and high R² values are
classified in Tab. 5. This study demonstrates that ma-
chine learning and deep learning methods exhibit high
accuracy in forecasting performance across all fore-
casting horizons. While image-based methods perform
effectively for very short-term forecasting, ARIMA-
based models show strong performance for long- and
medium-term forecasts. Hybrid approaches achieve
high accuracy in short-term horizons, whereas ANN
methods are observed to be effective for medium-term
horizons. In solar irradiance studies, the relationship
between the forecasting horizon and model selection is
previously indicated in Tab. 1. The findings suggest
that the superiority of a forecasting model is deter-
mined by the chosen model relative to the forecasting
horizon rather than meteorological and geographical
conditions.

Fig. 15: The forecasted results of GHI with Dec 20, 2022.

Fig. 16: The forecasted results of GHI with Feb 22, 1022.

Although hybrid models exhibit high accuracy in
forecasting performance, their complex structures can
pose challenges in the prediction process. Optimization
algorithms are employed to mitigate this complexity
and cost [123]. Data preprocessing, outlier detection,
and feature extraction reduce the computational steps
in prediction calculations. In solar irradiance forecast-
ing for the Saudi Arabian region, four different algo-
rithms were used to select distinct features. The re-
sults showed that feature selection significantly reduced
computational costs by eliminating unnecessary infor-
mation and achieved good forecasting performance. In
another study utilizing feature extraction and dimen-
sionality reduction techniques, the model complexity
was reduced, leading to solar forecasts with smaller er-
ror values [124].

Despite promising advancements in solar forecast-
ing, artificial intelligence (AI), and deep learning meth-
ods face significant barriers in terms of transparency

Fig. 17: The forecasted results of GHI with Apr 10, 2021.
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Fig. 18: The forecasted results of GHI with Oct 23, 2021.

Fig. 19: The forecasted results of GHI with Nov 27, 2021.

and explainability. This lack of transparency can lead
to distrust in the adoption of AI models. Therefore,
enhancing the transparency and explainability of AI-
based models is a priority. Establishing rules for model
decisions, using techniques like Local Interpretable
Model-agnostic Explanations (LIME) and Shapley Ad-
ditive Explanations (SHAP), and visualizing the model
structure clarify the prediction process. In a solar fore-
casting study conducted in Bangladesh, incorporating
explainable AI approaches such as SHAP, LIME, and
Explain Like I’m 5 (ELI5) resulted in a secure and sus-
tainable energy solution [125]. Another solar forecast-
ing study in Fez, Morocco, used Permutation Feature
Importance (PFI) and SHAP interpretation techniques
to explain and improve machine learning model predic-
tions. Independent interpretation techniques revealed
how each parameter influenced the model’s forecasts
[126].

Fig. 20: The forecasted results of GHI with May 19, 2022.

Fig. 21: The forecasted results of GHI with Aug 22, 2022.

Tab. 5: According to the prediction horizon, selecting a model
that demonstrates superior performance.

Very-short
term

Short-
term

Medium-
term

Long-
term

Image-based ML ML ML
Hybrids DL DL DL
Hybrids ARIMA ARIMA ANN

For a better understanding of AI-based models, they
must be interpretable and explainable. A solar fore-
casting study in the Saudi Arabian region developed
an explainable meta-heuristic-based fuzzy system. The
model continuously updates itself to maintain inter-
pretability through a lifelong learning process. The
proposed method achieved 13.2% higher accuracy than
other black-box models [127]. In Australia, a solar ir-
radiance forecasting study developed an explainable AI
model calibrated with uncertainty quantification. The
explanations generated by the model provided users
with insights into the impact of each variable. This
enhances model stability and reliability for external
stakeholders in the energy sector [128].

Privacy and ethical considerations are additional
barriers to the adoption of AI-based models. Some AI
technologies are being developed to process sensitive
data while protecting individual privacy. In a study
on solar energy, homomorphic encryption was used to
perform computations while encrypting the data. This
method outperformed models without privacy protec-
tion. Privacy protocols not only promote the ethical
use of AI-based models but also enhance the model’s
forecasting ability [129].

The sustainability of ML-based models is a crucial
measure of their ability to adapt to changing condi-
tions. Additionally, some resource limitations, such as
training time and processing speed, may arise in stud-
ies using large data sets. In a solar study conducted in
China, a radiative transfer learning approach achieved
high-speed and high-accuracy forecasts with fewer re-
sources compared to complex and multi-layered models
[130]. Another advantage of the transfer learning ap-
proach is its ability to improve GHI forecasting perfor-
mance by transferring valuable parameter information
when data availability is insufficient [131]. Incremental
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Tab. 6: According to the prediction horizon, selecting a model that demonstrates superior performance.

Ref.
Name

of
model

Time
horizon

Location Forecast
variable

MAE(
W/m2

) MBE(
W/m2

) RMSE(
W/m2

) rRmse(
W/m2

) R2

[18] MSG-SEVIRI 15 min Netherland GHI DHI - - 96 34 -
[19] FY-4A(CSD-SI) 60 min Northwest China GHI 44.87 9.84 60.89 18.93 -
[20] FY-4A(AGRI) 30 min Chengde, China DNI 148.43 5.31 240.01 40.96 -
[21] GOES-H2 Daily Saint Georges,

France
RTP-H2 - 70.0 106.4 0.94

Tab. 7: Performance of ground-based sky imager on solar irradiance forecasting.

Ref.
Name

of
model

Time
horizon

Location Forecast
variable

MAE(
W/m2

) MBE(
W/m2

) RMSE(
W/m2

) R2

[26] ASI-16 10 min Golden, Colorado GHI 15.61 - 16.02 -
[27] ASI-Real Time Irradiance 1 min Salto, Uruguay GHI 112 25.5 184 -

[28]
Image based -
Cloud Motion

Tracking
5 min Wollongong,

Australia
GHI 13 - 18 -

[29] ASI-16 Hourly Taiwan GHI 34.03 - 53.99 0.95
[30] All Sky Imager-1 10 min Spain GHI 36.7 3.6 - 0.92
[31] ASI-Cuboid 10 min Golden, Colorado GHI - - 67.57 -
[32] DenseNet-121 10 min Golden, Colorado GHI 49.1 - 80.4 -
[33] ASI-kNN Hourly Golden, Colorado GHI - - 116.7 -

[22] Sky Image Irradiance
Mapping - SVM Hourly Wasco Power Station GHI - - 92.72 -

learning ensures that learned knowledge can be applied
to new data without being forgotten, thus facilitating
the model’s adaptation to changing conditions. In a so-
lar study utilizing an incremental learning algorithm,
the proposed model readily adapted to climate changes
[132].

The assumption that long forecast horizons have low
predictability and clear skies have high predictability
is quite common in the literature. However, a study
challenging these traditional assumptions created pre-
dictability maps. It demonstrated that the predictabil-
ity of the atmospheric process could be determined
by an equation that considers the performance of a
series of forecasts and a reference set. The results
showed that predictability is not dependent on the fore-
cast horizon or climate and sky cloud conditions [133].
High-accuracy forecasts can be achieved by adjusting
the parameter values of the model for regions with dif-
ferent meteorological conditions [11].

In regions where meteorological data are not secure,
forecasting performance is directly affected. For ar-
eas where data measurement is not possible or suffi-
cient, climate simulations obtained from Global Cli-
mate Models (GCMs) are used. GCMs provide an ef-
ficient and sustainable means of utilizing solar energy
[134]. The increase in climate change limits the re-
liability of meteorological data due to environmental
factors. In Nigeria, a solar study was conducted under
different climate scenarios resulting from the effects of
global warming. The use of GCM outputs allowed for a
better assessment of the impact of climate change and
the quality of meteorological data [135].

7. Conclusion

Solar energy stands out as one of the most favored
renewable energy sources due to its cleanliness, cost-
effectiveness, and sustainability. However, its inter-
mittent nature and variable power output necessitate
accurate irradiance estimation for feasibility studies in
the energy sector. Over the past five years, significant
research has been conducted in this field, as evidenced
by literature reviewed in this article. Additionally, an
application using the ANFIS model for solar radiation
estimation is presented, which serves as a practical ex-
ample for newcomers to this field. Notably, the ANFIS
model achieved the most accurate solar forecast with
an RMSE of 1.641 and an R2 value of 0.996 for Decem-
ber 20, 2020. The prediction performance and model
findings of the models in the literature, classified ac-
cording to methods, are summarized in Tab. 6-13.

Solar radiation forecasting methods can be catego-
rized based on the method and forecast horizon, in-
cluding very short-term, short-term, medium-term and
long-term predictions. Models utilizing sky and satel-
lite imagery demonstrate high accuracy for very short-
term forecasting under various weather conditions. For
satellite image-based models, RMSE values range from
60.89 W/m² to 346 W/m², while the MAE values vary
from 45.26 W/m² to 224.51 W/m². Ground-based sky
imager models achieve RMSE values ranging from 18
W/m² to 251 W/m² with R2 values between 0.89 and
0.98. The performance of these models is directly in-
fluenced by cloud properties such as movement, speed,
and thickness.
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Tab. 8: Performance of numerical weather prediction on solar irradiance forecasting.

Ref.
Name

of
model

Time
horizon

Location Forecast
variable

MAE(
W/m2

) MBE(
W/m2

) RMSE(
W/m2

) FS

[38] FARMS-DNI Hourly Southern DNI 151.76 - 203.59 -
[39] WRF Hourly Gifu, Japan GHI - 96 210 -
[40] WRF-Solar-PCA Hourly Singapore GHI 133 -14 169 -
[41] MLP – NWP

Post Process
Monthly Pennsylvania GHI 91.1 (NMAE) 6.3 (NMBE) - -

[42] ECMWF-HRES Hourly Desert Rock GHI 44 -9 74 -
[43] ACCESS Daily Australia GHI - - - 0.26

[44] GFS HRRR-
Kalman Filter

Hourly
Goodwin
Creek,

Mississippi
GHI - 0.31 - -

NWP models are utilized for short and medium-term
forecasts, with MAE values ranging from 44 W/m²
to 151.76 W/m² and RMSE values from 74 W/m² to
203.59 W/m². Various statistical techniques are em-
ployed for forecasting across different time horizons.
ARIMA-based models are frequently utilized for ana-
lyzing time series data in solar radiation forecasting.
These models address the seasonal nature of solar ra-
diation by capturing seasonal patterns and trends. In
addition to ARIMA, SARIMA models incorporate sea-
sonality into the forecasting process. SARIMAX mod-
els extend SARIMA by incorporating exogenous vari-
ables, allowing for the inclusion of additional predictors
that may influence solar radiation levels. RMSE values
of ARIMA-based models range from 0.5414 W/m² to
63.54 W/m², while the MAE values range from 0.2581
W/m² to 35.23 W/m². The prediction performance is
achieved the highest R2 value of 0.99.

Among the individual models utilized in the litera-
ture, artificial intelligence, machine learning, and deep
learning techniques are predominantly employed. In
these models, the lowest RMSE value recorded was
0.099 W/m², and the lowest MAE value was 0.026
W/m². The R2 value ranges from 0.87 to 0.99. Re-
searchers prefer using multiple models simultaneously
or combining optimization algorithms to enhance pa-
rameters, rather than relying on a single method for
higher accuracy. Hybrid models, the RMSE value
ranges from 0.99 W/m² to 134.9 W/m². The high-
est R2 value achieved is 0.99, with the lowest MAE
value recorded at 15.7 W/m².

Most reviewed articles compare linear models with
nonlinear models, deep learning models with tradi-
tional machine learning models, and hybrid models
with single models. Other studies have focused on some
potential limitations that need to be considered. To
reduce the structural complexity and computational
cost of hybrid models, optimization algorithms, data
preprocessing, outlier detection, and feature extraction
techniques have been applied. The interpretability of
AI algorithms enhances the transparency and reliabil-
ity of the models.

The selection of the forecasting region depends on its
suitability for solar energy investments or places where
direct solar measurements are not practical. Given the
intermittency of solar energy, particularly in the winter
months, some studies have concentrated on forecast-
ing solar radiation during these periods. In situations
where meteorological values cannot be measured or are
inadequate, climate simulations are utilized.

This study presents summarized findings from var-
ious articles examining parameters such as predicted
regions, forecasting periods, meteorological measure-
ments, and model complexities. Additionally, it ad-
dresses potential limitations in the field of solar fore-
casting and summarizes solutions to these issues as dis-
cussed in the literature. This provides a comprehensive
perspective on the field of solar forecasting and shapes
future research directions.
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Tab. 10: Performance of ANN on solar irradiance forecasting.
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Tab. 11: Performance of machine learning on solar irradiance forecasting.

Ref. Name of
model

Input
variables

Time
horizon Location Forecast

variable
MAE(
W/m2

) MBE(
W/m2

) RMSE(
W/m2

) R2
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GHI
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(MJ/m²)
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(MJ/m²)
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Temp, air
pollutans
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RH

Monthly 163 Met. Stat.
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precipitation,
ATM, RH,

WS, visibility,
sunshine
duration

Daily Ganzhou,
China

GHI
1.498

(MJ/m²) -
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(MJ/m²) 0.92

XGBoost Monthly
0.870

(MJ/m²) -
1.131

(MJ/m²) -
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Power
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Power

- -
11.226
(W) -

*ATM: Atmospheric Pressure, *Temp: Temperature, *RH: Relative Humudity, *WS: Wind Speed, *GSR: Global
Solar Radiation,

*Lon: Longitude, *Lat: Latitude, *AQI: Air Quality Index, *Met. Stat: Meteorology Station
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Tab. 12: Performance of hybrids on solar irradiance forecasting.

Ref. Name of
model

Input
variables

Time
horizon Location Forecast

variable
MAE(
W/m2

) MBE(
W/m2

) RMSE(
W/m2

) R2

[109] ARIMA-ANN GSR Daily Tanger,
Morocco

GHI - -3.430 446.35 0.98

[56] ARIMA-FFBP

Ambient
temperature,
WS, RH, Lat

etc.

Daily Tanger,
Morocco

GHI -
0.022

(kWh/m²)
0.307

(kWh/m²) 0.99

[110] ANFIS-PSO
Sunshine

duration and
AT

Monthly
Kuala

Terengganu,
Malaysia

GHI - -
0.306

(MJ/m²) 0.99

[112] CNN-MLP

Hemispheric
camera images,
GSR, Temp,
RH, WS,WD

Daily
(Cloudy)

Benguerir,
Morocco

GHI - -7.66 49.16 0.94

Daily
(Clear) GHI - -0.87 13.05 0.99

[113] Satellite
images + CNN

Temp, RW,
ATM, WS, RF,
cloud factors,
past irradiance
values, solar
zenith angle,

satellite images

Hourly
(Win-
ter)

Shandog,
China

GHI 15.7 - 22.2 -

Hourly
(Sum-
mer)

25.7 - 31.6 -

[114]
Satellite

images + Sky
images

Sky images,
satellite

observations,
past GSR

Hourly France GHI - - 134.9 -

[115] LSTM-CNN

Temp, WS,
RH,

precipitation,
DP, cloud

type, clear-sky
irradiance
value etc.

Hourly San Diego,
California

GHI 27.38 - 42.89 0.98

[116] Deep Hybrid
SCLC

GSR, WS, air
quality Daily Barunggam,

Australia
GHI - -

2.338
(MJ/m²) 0.93

[117] GRU-
Attention

GSR, WS
30-min
(Win-
ter)

Nevada, Las
Vegas GHI 33.66 - 41.69 0.99

30-min
(Sum-
mer)

38.33 - 44.15

[118] Bi-GRU -
ARIMA

GSR, Temp,
RH, WS etc. Minutely Jinju, South

Korea
GHI 34.16 - 72.28 0.93

Hourly 77.63 - 104.4 0.84
*ATM: Atmospheric Pressure, *AT: Air Temperature, *Temp: Temperature, *RH: Relative Humudity, *WS:

Wind Speed,
*WD: Wind Direction, *RF: Rainfall, *GSR: Global Solar Radiation, *DP: Dew Point, *Lat: Latitude
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